Haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26: X-ray crystallographic studies of dehalogenation of brominated substrates.

نویسندگان

  • Victor A Streltsov
  • Zbynek Prokop
  • Jirí Damborský
  • Yuji Nagata
  • Aaron Oakley
  • Matthew C J Wilce
چکیده

The haloalkane dehalogenases are detoxifying enzymes that convert a broad range of halogenated substrates to the corresponding alcohols. Complete crystal structures of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 (LinB), and complexes of LinB with 1,2-propanediol/1-bromopropane-2-ol and 2-bromo-2-propene-1-ol, products of debromination of 1,2-dibromopropane and 2,3-dibromopropene, respectively, were determined from 1.8 A resolution X-ray diffraction data. Published structures of native LinB and its complex with 1,3-propanediol [Marek et al. (2000) Biochemistry 39, 14082-14086] were reexamined. The full and partial debromination of 1,2-dibromopropane and 2,3-dibromopropene, respectively, conformed to the observed general trend that the sp(3)-hybridized carbon is the predominant electrophilic site for the S(N)2 bimolecular nucleophilic substitution in dehalogenation reaction. The 2-bromo-2-propene-1-ol product of 2,3-dibromopropene dehalogenation in crystal was positively identified by the gas chromatography-mass spectroscopy (GC-MS) technique. The 1,2-propanediol and 1-bromopropane-2-ol products of 1,2-dibromopropane dehalogenation in crystal were also supported by the GC-MS identification. Comparison of native LinB with its complexes showed high flexibility of residues 136-157, in particular, Asp146 and Glu147, from the cap domain helices alpha(4) and alpha(5)('). Those residues were shifted mainly in direction toward the ligand molecules in the complex structures. It seems the cap domain moves nearer to the core squeezing substrate into the active center closer to the catalytic triad. This also leads to slight contraction of the whole complex structures. The flexibility detected by crystallographic analysis is in remarkable agreement with flexibility observed by molecular dynamic simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative analysis of substrate specificity of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26.

Haloalkane dehalogenases are microbial enzymes that cleave a carbon-halogen bond in halogenated compounds. The haloalkane dehalogenase LinB, isolated from Sphingomonas paucimobilis UT26, is a broad-specificity enzyme. Fifty-five halogenated aliphatic and cyclic hydrocarbons were tested for dehalogenation with the LinB enzyme. The compounds for testing were systematically selected using a statis...

متن کامل

Exploring the structure and activity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26: evidence for product- and water-mediated inhibition.

The hydrolysis of haloalkanes to their corresponding alcohols and inorganic halides is catalyzed by alpha/beta-hydrolases called haloalkane dehalogenases. The study of haloalkane dehalogenases is vital for the development of these enzymes if they are to be utilized for bioremediation of organohalide-contaminated industrial waste. We report the kinetic and structural analysis of the haloalkane d...

متن کامل

Expression of glycosylated haloalkane dehalogenase LinB in Pichia pastoris.

Heterologous expression of the bacterial enzyme haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26 in methylotrophic yeast Pichia pastoris is reported. The haloalkane dehalogenase gene linB was subcloned into the pPICZalphaA vector and integrated into the genome of P. pastoris. The recombinant LinB secreted from the yeast was purified to homogeneity and biochemically characterized...

متن کامل

Modification of activity and specificity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 by engineering of its entrance tunnel.

Structural comparison of three different haloalkane dehalogenases suggested that substrate specificity of these bacterial enzymes could be significantly influenced by the size and shape of their entrance tunnels. The surface residue leucine 177 positioned at the tunnel opening of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26 was selected for modification based on structural an...

متن کامل

Short communication

The inhibition of the model enzyme, haloalkane dehalogenase from Sphingomonas paucimobilis, was investigated by a combination of electrophoretically mediated microanalysis with a partial filling technique, followed by indirect or direct detection. In this setup, part of the capillary is filled with a buffer suitable for the enzymatic reaction (20 mM glycine buffer, pH 8.6) whereas the rest of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 42 34  شماره 

صفحات  -

تاریخ انتشار 2003